The Association of motor skills with Adaptive functioning in Children with 47,XXY/Klinefelter and XXYY syndrome

S. Martin¹, L. Cordeiro¹, S. Davis^{1,2}, N. Tartaglia^{2*}
1 Children's Hospital Colorado, Aurora, Colorado
2 University of Colorado School of Medicine, Department of Pediatrics, Au

Introduction

- Klinefelter syndrome (47,XXY) and 48,XXYY syndrome are two genetic disorders in which males have additional sex chromosome compared to the typical male karyotype of 46,XY.
- The conditions have been previously associated with cognitive, motor and adaptive (AF) delays.
- The aim of this study was to evaluate motor skills and their association with adaptive functioning in these groups.
- In this project we aimed to further describe and compare the visual motor integration (VMI) and motor skills in children and adolescents with 47,XXY/KS and 48,XXYY, and to further analyze factors associated with motor deficits such as age, cognitive abilities and adaptive functioning skills.

Klinefelter Syndrome

- Occurs in 1:500-1:1,000 births
- Tall stature
- Clinodactyly (curved 5th finger)
- Low muscle bulk and tone
- Flat feet with ankle pronation
- Joint hyperextensibility, tremor
- Low testosterone production, infertility
- Language-based learning difficulties
- Delays in early motor development
- 80% of KS receive special education
- 5% or less have intellectual disabilityVisual perceptual skills are a strength
- Attention difficulties

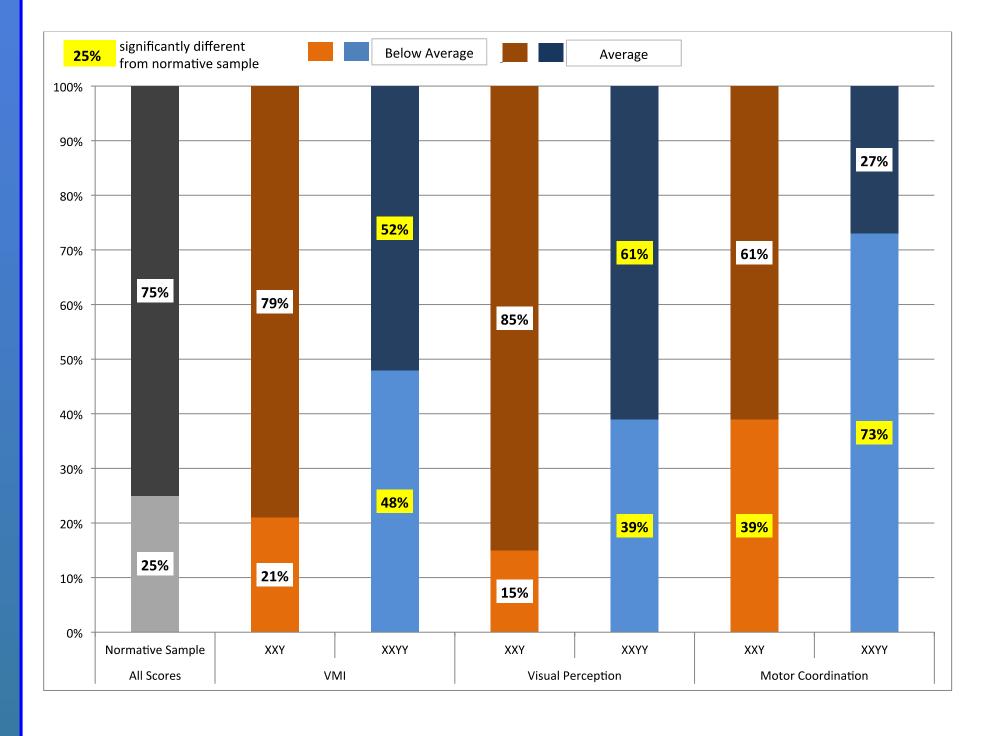
48,XXYY syndrome

- Occurs in 1:18,000 births/shared medical presentation including:
- Cubitus varus (narrowed carrying angle at elbow), Radioulnar synostosis
- Clubfoot, seizures, scoliosis
- 90% speech and language delays
- 75% motor skill delays
- Learning and educational difficulties are present
- 30% with intellectual disability
- Anxiety, attention difficulties, impulsivity, social problems and autism

Methods

- 64 male participants with 47,XXY/KS and 46 participants with 48,xxyy (mean age KS= 12.16) (mean age XXYY= 13.27, years old, age range 4-21 years).
- Participants were recruited for a study on neurodevelopmental and psychological features of sex chromosome aneuploidy through national advocacy groups for individuals with sex chromosome aneuploidy.
- The parents of each participant signed consent, IRB approval was granted.
- Instruments included: BOT-2, VMI, Vineland Adaptive Behavior Scales, WASI and WiSC

Results


- Results show there is large variability within both conditions.
- Higher proportion of individuals with both 47,XXY/KS and 48,XXYY with motor coordination deficits on the VMI compared to the normative sample.
- 47,XXY/KS and 48,XXYY had significant deficits in the manual dexterity tasks of the BOT-2.
- Boys with 48,XXYY showed more significant overall motor deficits compared to the 47,XXY/KS group.
 Nonverbal cognitive skills and visual perceptual skills were an area of strength for both
- groups.
 Lower visual motor skills were associated with lower cognitive scores in both groups.
- Lower adaptive functioning scores in activities of daily living with 47,XXY/KS and lower adaptive composite score in 48,XXYY group.

Results

Figure 1: Comparison of Age, Cognitive Scores, and Beery VMI results in 47,XXY/KS & 48,XXYY

	47,XXY/KS	48,XXYY	T-test Results
Age	N=64	N=46	
Mean (SD)	12.16 (3.48)	13.27 (4.46)	t(90) = -1.728 p = .087
Range	4.80-21.45	4.43-20.19	
IQ- (WASI & WISC-IV)	N=64	N=46	
Verbal- Mean (SD)	92.66 (17.37)	75.93 (14.36)	t(108) = -5.35, p = .000
Verbal- Range	53-119	53-102	
Performance- Mean (SD)	100.64 (15.75)	87.09 (12.99)	t(107)=4.746, p=.000
Performance- Range	61-129	63-108	. , ,
Full Scale- Mean (SD)	96.11 (17.74)	79.91 (14.86)	t(107)=5.034, p=.000
Full Scale- Range	46-125	47-121	•
Beery Visual Motor Integration	N=62	N=46	
Visual Motor Integration Mean (SD)	92.30 (14.35)	81.48 (11.26)	t(106)= 4.239, p=.000
Visual Perception supplementary test	99.63 (15.14)	88.22 (13.58)	t(104)=4.021, p=.000
Motor Coordination supplementary test	87.46 (16.88)	77.73 (15.45)	t(101)=2.999, p=.003*

* p<0.05 for T-test comparing XXY to XXYY

Figure 3: Results of Beery Buktenica VMI, Visual Perception, Motor Coordination in 47,XXY/KS and 48,XXYY

Figure 2: Cognitive and Adaptive scores in 47,XXY/KS and 48,XXYY with below average compared to average VMI scores

	VMI	VMI	T-Test
	Below Average	Average or Above	
47,XXY/KS			
N	13	49	
Age	12.5 (2.45)	11.99 (3.71)	t(60) = .464, p = .645
IQ Mean (SD)			
Verbal	78.92 (22.16)	95.98 (14.43)	t(60) = -2.631, p = .019*
Performance	86.62 (14.98)	104.47 (14.12)	t(60) = -3.992, p = .000*
Full Scale	80.62 (20.92)	100.44 (14.9)	t(59) = -3.848, p = .000*
Adaptive Functioning Mean (SD)	10	45	
Communication	72.70 (19.60)	87.67 (16.69)	t(53)= -2.487, p=.016*
Daily Living	80.50 (22.82)	92.11 (16.64)	t(53)=1.861, p=.068
Social	82.70 (20.47)	91.16 (18.27)	t(53)= -1.296, p=.201
Motor	95.00 (23.67)	107.60 (13.22)	t(41)= -1.271, p=.255
Adaptive Composite	78.40 (19.87)	89.24 (16.48)	t(53) = -1.814, p = .075
48,XXYY			
N	22	24	
Age	14.99 (4.01)	11.69 (4.33)	t(44)=2.64, p=.010*
IQ Mean (SD)			
Verbal	74.18 (14.0)	77.54 (14.82)	t(44) =789, p = .434
Performance	84.67 (13.9)	89.21 (12.04)	t(43) = -1.175, p = .247
Full Scale	76.36 (13.2)	83.17 (15.78)	t(44)= -1.576, p=.122
Adaptive Functioning Mean (SD)	20	22	
Communication	54.65 (16.77)	72.18 (19.31)	t(40) = -3.127, p = .003*
Daily Living	68.85 (10.49)	78.64 (15.55)	t(40)= -2.410, p=.021*
Social	70.80 (11.82)	79.14 (13.51)	t(40) = -2.119, p = .040*
Motor	96.75 (18.50)	96.73 (19.24)	t(21)= .002, p=.998
Adaptive Composite	67.68 (7.27)	75.45 (13.33)	t(39)= -2.357, p=.024*

ВОТ-2	XXY	XXYY	T-test and Fisher's Exact Test
N	47	17	
Fine Manual Control	48.5 (12.66)	41.3 (11.68)	t(65)=2.194, p=.032*
Percent Below Average	52.1%^^	72.2%^^	p=57.6%
Fine Motor Precision	49.06 (10.33)	42.3 (11.01)	t(65)=2.404, p=.019*
Percent Below Average	25.5%	60.0%^^	p=35.8%
Fine Motor Integration Percent Below Average	50.75 (9.69) 14.6%	46.0 (10.91) 50.0%^^	t(66)=1.699, p=.094 p=25.0%
Manual Coordination Percent Below Average	45.00 (9.37) 22.2%	34.2 (13.79) 62.5%^^	t(63)=3.686, p=.000* p=31.1%
Manual Dexterity	42.35 (8.70)	37.3 (8.62)	t(64)=.2.093, p=.040*
Percent Below Average	15.2%	55.0%^^	p=28.8%
Upper Limb Coordination Percent Below Average	50.34 (9.42) 31.1%^	43.8 (9.94) 47.4%^	t(64)=2.552, p=.013* p=35.9%
Body coordination	46.37 (9.68)	34.9 (13.55)	t(61)=3.761, p=.000*
Percent Below Average	29.8%^	60.0%^^	p=40.3%
Bilateral Coordination Percent Below Average	46.48 (9.36) 13.6%	40.1 (8.36) 52.9%^^	t(62)=2.568, p=.013* p=24.6%
Balance	49.11 (10.49)	41.25 (11.81)	t(59)=2.490, p=.016*
Percent Below Average	22.7%	50.0%^	p=32.3%
Strength & Agility Percent Below Average	46.04 (9.18) 18.2%	38.5 (5.83) 64.7%^^	t(59)=3.105, p=.003* p=31.1%
Running Speed & Agility Percent Below Average	48.27 (8.76) 28.9%	38.5 (5.86) 70.0%^^	t(59)=4.198, p=.000* p=41.5%
Strength Percent Below Average	46.81 (8.16) 33.3%^	38.5 (5.83) 77.8%^^	t(60)=3.205, p=.002* p=44.4%
Total Motor Composite Percent Below Average	45.68 (9.45) 27.3%	38.11 (7.63) 64.7%^^	t(59)=2.944, p=.005* p=37.7%

Figure 4: Comparison of Motor Kills on the BOT-2 in 47,XXY/KS and XXYY

Conclusions

- This is the first study to analyze and compare visual motor and motor skills in SCA.
- Both 47,XXY/KS and 48,XXYY showed motor coordination deficits on the VMI, and deficits in the manual dexterity tasks of the BOT-2.
- Nonverbal cognitive skills (performance IQ) and visual perceptual skills were an area of relative strength for both groups.
- Low visual motor abilities were associated with lower cognitive scores in both 47,XXY/KS and 48,XXYY groups,.
- Low adaptive scores in the daily living skills in 47,XXY and low adaptive composite score in 48,XXYY.
- Our study expands upon this finding to further report the supplementary tests of visual perception and motor coordination where motor coordination was found to be a significant area of weakness for both groups.
- Deficits in bilateral coordination were found in SCA than expected for the general population with specific difficulties in sequencing, planning and execution of these motor tasks observed during testing.
- This study was part of an ongoing study at the University of California Davis, MIND Institute and The Children's Hospital in Denver, Colorado through the eXtrordinarY Kids Clinic.
- Special Thanks to Nicole Tartaglia, M.D.
- Acknowledgement to the Occupational Therapy Department at Children's Hospital Colorado.