
1 3

J Endocrinol Invest (2017) 40:123–134
DOI 10.1007/s40618-016-0541-6

SHORT REVIEW 

Klinefelter syndrome (KS): genetics, clinical phenotype 
and hypogonadism

M. Bonomi1,2 · V. Rochira3,4 · D. Pasquali5 · G. Balercia6 · E. A. Jannini7 · A. Ferlin8 · 
On behalf of the Klinefelter ItaliaN Group (KING) 

Received: 13 July 2016 / Accepted: 25 August 2016 / Published online: 19 September 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

Keywords Klinefelter syndrome · KS · Testosterone · 
Hypergonadotropic hypogonadism · Chromosome 
abnormalities · Azoospermia · Male infertility

Introduction

In 1942, Klinefelter et al. [1] published a report on 9 men 
who had enlarged breasts, sparse facial and body hair, 
small testes, and an inability to produce sperm. In 1959, 
these men with Klinefelter syndrome (KS) were discov-
ered to have an extra X chromosome (genotype XXY) 
instead of the usual male sex complement (genotype XY). 
The classic form of KS, which is present in the 80–90 % 
of the cases, is defined by a 47,XXY karyotype resulting 
from the aneuploidy of the sex chromosomes, whereas 
higher-grade aneuploidies (e.g. 48,XXXY or 48,XXYY), 
structurally abnormal X chromosome (e.g. 47,iXq,Y) or 
mosaicisms (e.g. 47,XXY/46,XY) make up approximately 
in the remaining 10–20 % of cases. The prevalence of KS 
(ranging from 0.1 to 0.2 % in newborn male infants) rises 
up to 3–4 % among infertile males and 10–12 % in azoo-
spermic patients [2], and it is the most frequent observed 
sex chromosomal anomaly, with an estimated frequency 
of 1:500 to 1:1000 men [3]. KS has increased in the last 
years [4] although in the absence of a concomitant rise in 
the prevalence of XXY aneuploidy. This may indicate that 
the rise of the KS might be related to the increasing of the 
paternal meiotic alterations. KS patients have a phenotype 
which is extremely variable, but without any obvious facial 
dysmorphology that make them indistinguishable from the 
boys with normal karyotype [5].

KS is associated with several clinical conditions com-
ing from both the genetic abnormalities and hypogonadism. 
The aim of this review is to discuss KS clinical features 
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according with the genetic and hormonal (low testosterone) 
factors involved in their pathogenesis.

Clinical phenotype and hypogonadism

Clinical phenotype

The major signs and symptoms of Klinefelter Syndrome 
(KS) have been well characterized since the first descrip-
tion of the disease [1]. As traditionally described, patients 
with KS have tall stature, small testes, gynecomastia in late 
puberty, gynoid aspect of hips (broad hips), sparse body 
hair, signs of androgen deficiency and low serum testos-
terone coupled with elevated gonadotropins, and finally 
azoospermia, oligospermia with hyalinization and fibro-
sis of the seminiferous tubules [5, 6] (Fig. 1). Usually, the 
above-mentioned signs of hypogonadism are also coupled 
with psychosocial problems, although an alternative pheno-
type has also been described, characterized by fewer clini-
cal features.

Clinical features depend on both the supernumerary X 
chromosome and the effects of hypogonadism [7]. How-
ever, what we know about signs and symptoms of KS 
renders about the tip of the iceberg (Fig. 1) since most of 
the patients with KS remain overlooked [5]. It has been 
estimated that the prevalence of the KS is greater than the 
number of patients who really had received a clinical diag-
nosis thanks to the comparison of epidemiological data 
coming from prenatal diagnosis with those obtained from 
men who have been diagnosed after birth [3, 8]. Unfortu-
nately, the clinical picture of men with KS in the form we 
know (as settled by data available in the literature) comes 
directly from the description of men who had received a 
certain diagnosis of KS [5, 8]. Hence, signs and symp-
toms at the base of the iceberg of the classical clinical 
phenotype of KS remain still to be completely unraveled 
(Fig. 1). Indeed, the classical phenotype described above 
has been characterized only on the basis of a small number 
of affected patients, precisely those seeking medical con-
sultation and probably displaying the most severe degree 
of clinical features.

Fig. 1  Signs and symptoms of KS according to the severity of clinical phenotype
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The broad spectrum of phenotypes in KS

In spite of the clinical phenotype of men with KS, as clas-
sically described in the literature, a parallel, less described 
phenotype has also been recognized, in which patients 
present with fewer clinical features [9]. These less severe 
or mild forms (most of which remain often undiagnosed) 
are characterized by paucisymptomatic manifestations [5, 
10, 11]. Thus, the real complete spectrum of different KS 
phenotypes remains still to be fully elucidated in detail 
(Fig. 1). Probably, the phenotype depends on the severity 
of the expression of genetic defect, androgen deficiency, 
and androgen receptor sensitivity (i.e., CAG repeats poly-
morphism) [12]. The more the genetic expression, andro-
gen deficiency, and androgen receptor sensitivity are worse, 
the more the phenotype will be severe [13] (Fig. 2). Less 

severe forms of genetic abnormalities, such as mosaicism, 
generally result in both less severe clinical symptoms and 
endocrine abnormalities [14], while the phenotype pro-
gressively worsens with the severity of polysomy (e.g. 49, 
XXXXY) [5, 7, 10, 11]. Language and speech disabilities 
increases with the increase of supernumerary X chromo-
some and seem to contribute decreasing of 15–16 points 
of intelligence quotient (IQ) per each extra X chromosome 
[15].

The high frequency of mild phenotypes explains, at least 
in part, why most of the patients with KS remain undiag-
nosed [6] and claims for efforts in improving our ability to 
promptly reach a diagnosis. Since symptoms rarely present 
simultaneously, the disease remains often overlooked and 
the diagnosis is missed or delayed. It has been estimated 
that many cases remain undiagnosed and only 26 % of the 

Fig. 2  The broad spectrum of 
phenotypes in KS depends on 
the severity of all its compo-
nents (number of supernumer-
ary X chromosome, genetic 
impact of supernumerary X, 
severity of hypogonadism) as 
well as on the time duration 
of the disease, the delay in 
the diagnosis of testosterone 
deficiency, and advancing age 
coupled with increasing other 
comorbidities

Table 1  Phenotypic features of KS grouped according to the underlying pathogenetic mechanism

Features due to supernumerary X 
chromosome

Features due to Testosterone deficiency Features due to both supernumerary X 
chromosome and Testosterone deficiency

Onset Time Before Puberty At puberty or during adulthood Before puberty with progressive worsening 
after puberty

Signs Congenital malformations (cleft pal-
ate, hernia)

[rare]
Longer legs
Small testes

Sparse body and facial hair
Female pubic escutcheon
Reduced muscle mass
Bilateral gynecomastia
Eunuchoid skeleton
Impaired estradiol/testosterone ratio
Longer legs?
[T-deficiency during fetal life]??

Eunuchoid skeletal proportions
Gynoid hips
Tall stature
Genital abnormalities at birth [rare]
Elevated gonadotropins
BMI in the range of overweight or obesity
Metabolic abnormalities
Reduced bone mineral density

Symptoms Speech and language disabilities
Azoospermia

Impaired sexual desire
Impaired erectile function
Weakness and loss of vigor
Impaired well-being

Mood disturbances
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expected number of KS adults are correctly identified late 
in adult life, leading to severe complications and a more 
difficult clinical management [16].

Relationship between age and KS phenotype

Signs and symptoms appearance depend also on patients’ 
age. Furthermore, the phenotype tends to worsen with 
advancing age (Fig. 2), according to the increasing number 
of features and comorbidities that accumulate with aging 
and to the exacerbation of those already present. The time of 
onset of clinical signs and symptoms depends on patient’s 
age in men with KS. The timing of the clinical features 
appearance allows identifying both androgen-dependent and 
supernumerary X-dependent signs and symptoms (Table 1). 
Distinguishing symptoms related to androgen deficiency 
from that due to chromosomal abnormalities is crucial in 
order to improve the outcome of testosterone replacement 
therapy, to establish how the disease should be monitored 
during the follow-up, and to inform the patient on what the 
expected results are [17]. Signs and symptoms appearing 
during infancy such as longer legs [17, 18] and speech dis-
abilities [19, 20] have been attributed to the genetic abnor-
mality rather than to hypogonadism [5, 7, 10] (Table 1). 
Even though rare in KS [7, 21], genital anomalies (micro-
penis, undescended testis, bifid scrotum and hypospadia) 
might present at birth, but if they are due to the effects of 
supernumerary X chromosome/s or of androgen deficiency 
during fetal life remains still to be determined [5] (Table 1).

The main sign, which is always present in KS, is repre-
sented by small testes. At puberty, both the sexual develop-
ment and the growth spurt generally proceed in a normal way, 
but the progressive increase in testes volume does not occur, 
both testes remaining small (<4 mL in volume) and firm [1, 
5, 7, 10, 11]. Thus, testes volume does not increase at puberty 
while the penis and secondary sexual characteristics progress 
in a normal fashion through all the pubertal stages.

The degree of virilization varies widely in adult men 
with KS, but it shows a tendency to decrease and to worsen 
progressively with advancing age (Table 1), similarly to 
what happens to other clinical conditions associated with 
KS such as diabetes and metabolic syndrome [16, 22, 23]. 
Accordingly, after the age of 25, about 80 % of men with 
KS complain of symptoms related to overt hypogonadism 
(decreased libido, erectile dysfunction) [5, 24].

Genetics and clinical phenotype

The genetic phenotype

The genetic background for the KS is based on sex chro-
mosome non-disjunction, which leads to the presence of 

extra X chromosome/s. Indeed, non-disjunction represent 
the failure of chromosome to separate at anaphase during 
meiosis I, meiosis II or mitosis giving rise to cells with an 
aberrant number of chromosomes. This could happen either 
during oogenesis or spermatogenesis (aberrant partitioning 
of the chromosomes or chromatid during maternal or pater-
nal meiosis, respectively) or, less frequently (about 3 %), 
during early division of the fertilized egg.

The occurrence of the maternal or paternal meiotic non-
disjunction appears equally distributed in the KS patients 
(nearly 50 % each) [10]. In KS patients with an additional 
maternal X chromosome, non-disjunction in either the first 
or second meiotic division is most likely to have occurred, 
while in paternal cases the supernumerary X chromosome 
can only derive from a non-disjunction in the first meiotic 
division, since meiosis II error will result in either XX or 
YY gametes and therefore XXX or XYY zygotes [25].

The origin of the supernumerary X chromosome has also 
been associated with phenotypic differences, although evi-
dence is not conclusive. In particular, it has been reported 
that KS patients with a paternal origin of the supernumer-
ary X chromosome have a later onset and slower pubertal 
progression [26]. Other studies, however, suggested that 
the parental origin of the supernumerary X chromosome 
has no particular influence on the phenotype of the patients 
[27–29].

An advanced maternal, and possibly paternal, age has 
been reported as a risk factor for KS. A 4-fold increase in 
the prevalence of KS cases was showed in mothers aged 
>40 years, compared to mothers aged <24 [3]. The mater-
nal age effect was also shown in KS patients with post-
zygotic mitotic non-disjunction. Indeed, the first three 
mitotic divisions are controlled by maternal protein and 
RNA; thus, with the increase of the mother age, the chance 
of mitotic errors increases accordingly and the possibility 
of KS of post-zygotic origin as well. On the contrary, only 
some, albeit debatable, evidences for a relation with sex 
chromosomal trisomies and advanced paternal age were so 
far demonstrated [30].

Mosaicism (mainly 46,XY/47,XXY) is present in 
around 10–20 % of the KS patients and arises from either 
non-disjunction in an early mitotic division of the develop-
ing 46,XY zygote, or from loss of one of the X chromo-
some of a 47,XXY conception due to anaphase lagging.

Peculiar genetic aspects in KS

X chromosome inactivation and gene dosage

In the somatic cells of females, the transcription of one 
of the two X chromosome is known to be randomly inac-
tivated in order to ensure a dosage-compensation of the 
X-encoded genes to that of male cells. Although several 
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genes are escaping inactivation, the Barr body (sex chro-
matin) in female cells is microscopically identifiable and 
represents the visible inactivated X chromosome [31]. The 
untranslated RNA product of the X-inactive-specific tran-
script (Xist) gene, located on the long arm of the inactive 
X chromosome, mediates the coating and silencing of the 
extra X chromosome in human somatic cells [32, 33]. Thus, 
the expression of Xist indicates the presence of the second 
and any other supernumerary X chromosome in the somatic 
cell [34]. Recent studies demonstrated that Xist methyla-
tion in KS patients and in the 41,XXY KS mouse animal 
model is comparable with the one observed in female sub-
jects [35–37]. These data together with the expression of 
Xist in the blood cells of KS patients, while not in healthy 
46,XY men [38] and the findings of the Barr body in KS 
Leydig and Sertoli cells [39, 40] probably means that the 
somatic cells in KS males inactivate properly the extra 
X chromosome as the female cells. Thus, any increase in 
gene dosage in these cell types will only concern genes 
that escape the X chromosome inactivation. Indeed, it is 
estimated that around 15 % of X-linked genes in humans 
and thirteen genes in mice escape transcription inactiva-
tion (possibly skewed) to some degree [41–46], and many 
more show a cell-type-specific inactivation pattern [44]. 
The genes that escape inactivation are mapping prevalently 
on the short arm of the X chromosome (Xp). Neverthe-
less, these genes that escape X inactivation are putatively 
contributing to the KS phenotype, since they would be 
present in double gene dosage in male patient KS, whose 
metabolism may not be suitable for female dosage of cer-
tain X-linked genes. Werler et al. [47] have demonstrated 
that 4 genes (Eif2s3x, Ddx3x, Kdm5c, Kdm6a) that escape 
the X inactivation either in human and mice, present dif-
ferent expression profile in different organs of the 41,XXY 
KS mouse model. They are equally or less expressed in the 
liver and kidney of, respectively, 40,XX or 40,XY mice, 
while they are more expressed in the brain of the 41,XXY 
mice compared to the normal karyotyped mice, either male 
or female.

Moreover, the skewed X chromosome inactivation, 
defined as the preferential inactivation of one of the two X 
chromosome in female, is present in the KS patients as well 
and this phenomenon may influence the clinical phenotype.

The situation in the germ cells seems to be different and 
more complex since the X inactivation in these cells fol-
lows a distinct pathway [48, 49]. Earlier studies demon-
strated that germ cells were the only cell type in the tes-
tis expressing the Xist and this allows the first conclusion 
that the unique X chromosome in male germ cells was 
inactivated in the adult testis [50]. Nevertheless, later stud-
ies have shown that X inactivation does not fully occur in 
adult spermatogonia since a large number of X chromo-
some genes are expressed in the testicular germ cells [51]. 

Indeed, the complete sequencing of the human X chro-
mosome showed that around 10 % of X-linked genes (99 
genes) are testis specific and belong to the so-called can-
cer-testis antigens family [52]. It was demonstrated that X 
reactivation occurs during the germ cell development in 
the 41,XXY mouse model, and it is assumed that a proper 
X chromosome gene dosage is crucial for the survival of 
germ cell in the mature testis [53]. Thus, either in the germ 
cells of the KS patients, the altered X-linked gene dos-
age of these testis specific genes, due to their X inactiva-
tion escape, may compromise testicular function or influ-
ence the meiotic process itself and therefore play a role in 
the etiology of infertility in KS males [54–57]. A recent 
study demonstrated that the over expression in the mouse 
germ-cell-derived GC-1 and GC-2 cells of the gene Testis-
expressed 11 (TEX11), an X chromosome-encoded germ-
cell-specific protein that is expressed most abundantly in 
spermatogonia and early spermatocytes in the testes, results 
in a suppression of the cell proliferation [58]. These results 
suggest that increased expression of TEX11 in the germ 
cells of KS patients, following the X inactivation escape, 
may partially contribute to the germ cell death and make 
TEX11 a potential candidate gene responsible for the KS 
spermatogenetic failure.

The androgen receptor

The androgen receptor (AR) gene, which mapped to 
Xq11.2-12, is of physiological importance in the testis and 
may play a particular role in differences of the KS pheno-
type. The N-terminal domain of AR gene exon 1 contains a 
stretch of CAG repeats, which is highly polymorphic. The 
length of this stretch is inversely correlated with the recep-
tor activity [59]. In KS patients, one of the two AR alleles 
is inactivated [12, 60, 61], theoretically with the same prob-
ability. Nevertheless, Suzuki et al. [61] reported a prefer-
ential inactivation of the longer allele, while Zitzmann 
and colleagues the opposite [12]. Moreover, the KS series 
patients characterized by Zitzmann et al. [12] with the pref-
erential inactivation of the shorter allele, and thus charac-
terized by longer CAG repeats in their AR gene, tend to 
be more severely affected than those with the shorter CAG 
stretch. This correlation was found regarding their social 
status, body height, bone density, testicular volume, pres-
ence of gynecomastia and response to androgen substitu-
tion [12]. Another study demonstrated that KS patients with 
longer CAG stretch present later onset and slower progres-
sion of puberty and slower testicular degeneration process 
[26]. More recently another study confirmed the associa-
tion with the CAG repeats and the phenotypic variability of 
the KS patients (positive correlation of the length of CAG 
stretch with final height and span and negative with choles-
terol and hematocrit level) without any significant evidence 
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either of preferential inactivation of the shorter allele or the 
correlation between the skewed X inactivation and the clin-
ical manifestation of the analyzed KS series [13].

However, other studies [62, 63] did not found evidence 
for a preferential inactivation of AR with shorter or longer 
CAG repeats, nor found associations with some clinical 
features (osteoporosis, artery diameter) and weighted CAG 
repeat length.

Activity of the genes located in the pseudoautosomal 
regions (PAR)

The pseudoautosomal regions (PAR1 and PAR2) are short 
homologous regions between the X and Y chromosomes in 
mammals. The PAR behave like an autosome and recom-
bine during meiosis. Thus genes in this region are inher-
ited in an autosomal rather than a strictly sex-linked man-
ner [64]. PAR1 is located at the terminal region of the short 
arms and PAR2 at the tips of the long arms of these chro-
mosomes [64]. To date, 24 genes have been assigned to the 
PAR1 region [52, 64], being half of them with a known 
function. PAR1 is required during male meiosis for X–Y 
chromosomes pairing, a process which is known to have 
a critical function in spermatogenesis, at least in humans 
and mouse [65–67]. In contrast, so far only 4 genes have 
been discovered in the PAR2 region [52, 64]. All charac-
terized genes within PAR1 escape X inactivation, which 
means that it is normally present a double gene dosage of 
these gene product in males and female. Moreover, this 
also means that in KS male three active copies of the X–Y 
homologous genes of PAR will be present with possible 
influence in modulating the clinical phenotype. Of these 
genes, the only one that has been clearly shown to influ-
ence the phenotype in KS is the Short-stature Homeobox-
containing gene on chromosome X (SHOX) situated in 
the PAR1 on Xp. As already mentioned above, in KS tall 
stature and long extremities are evident since the early 
childhood despite normal circulating levels of IGF-1 and 
IGFBP-3. This suggests that the sole hypogonadism cannot 
explain completely this phenotype and, indeed, the exces-
sive expression of growth-related genes such as SHOX is 
implicated [68]. Moreover, brain natriuretic peptide and 
fibroblast growth factor receptor 3 are transcriptionally tar-
gets of SHOX [69, 70] and further studies on this molecular 
interaction may enhance our understanding of the pheno-
typic consequences of the syndrome.

Copy number variations in the X chromosome

Other than gene dosage effects and parental origin of the 
supernumerary X chromosome, recent evidence suggested 
that additional features of the X chromosome might have 
a role in phenotypic differences among KS subjects. In 

particular, it has been found that KS subjects have more 
frequently than controls X-linked copy number variations 
(CNVs) (41.5 vs 28.6 % of females and 18.6 % of males) 
[71]. The number of X-linked CNVs in KS patients was 
also higher with respect to that found in control females 
and males. Importantly, almost all of the X-linked CNVs 
in KS subjects were duplications, half of the X-linked 
CNVs fell within regions encompassing genes, and most 
of them (90 %) included genes escaping X inactivation in 
the regions of X–Y homology, particularly in PAR1 and 
Xq21.31. This means, for example, that duplication in these 
genes in KS subjects increases the copy number (and the 
expression) to four rather than to three as in KS men with-
out a duplication, suggesting that X-linked CNVs (espe-
cially duplications) might contribute to the clinical pheno-
type [71].

Hypogonadism and related phenotype

Hypogonadism remains silent until pubertal onset. Data 
on serum testosterone and estradiol in healthy prepubertal 
children are scanty, and there are no studies investigating 
sex steroids secretion in KS during infancy [24]. Usually, 
boys with KS enter puberty regularly and testosterone rises 
in a physiological way allowing epiphyseal closure and 
satisfactory development of secondary sexual characteris-
tics (i.e., penile size, scrotum morphology and pubic hair 
distribution) [24, 72–75]. At puberty, only few patients 
develop overt hypogonadism, with evident signs (horizon-
tal pubic line, scant body, axillary, and facial hair, poor 
muscle mass) and symptoms of under-virilization and/or 
delayed puberty [1, 5, 7, 10, 11]. Low to normal serum 
testosterone at puberty contributes in part to the develop-
ment of tall stature and worsens the ratio between upper 
to lower skeletal segments by exacerbating the growth of 
legs that are still longer since infancy [17]. Some authors 
also hypothesized that androgen deficiency in the first tri-
mester of life (during mini-puberty) might contribute to 
these skeletal features, but clear evidence is still lacking 
[17] (Table 1).

Serum T concentrations tend to fall to the mid-low range 
in the young adult with KS [22, 76] in accordance to the 
appearance and/or worsening of hypogonadal signs and 
symptoms (Fig. 2). However, the age of onset of hypog-
onadism is extensively variable [5]. In literature, lower than 
normal serum T concentrations (<12 nmol/L) is found in 
variable percentages (65–85 %) of adults with KS, although 
serum T can sometimes be in the normal range [5]. Hypo-
gonadism is always coupled with elevated gonadotropins 
(hypergonadotropic hypogonadism) and the latter are usu-
ally higher than normal even in patients with serum testos-
terone still in the normal range [1, 5, 10, 77, 78]. Due to 
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heterogeneous values of serum testosterone in KS, the ade-
quate threshold below which serum T should be considered 
insufficient in these patients is lacking. Controlled studies 
showing a different age-related hypogonadism in patients 
with KS are not available, so the use of inter-society guide-
line criteria for male hypogonadism seems to be, at present, 
the most appropriate one also in this context [79, 80].

Other reproductive hormones might be altered in KS. 
Serum estradiol might be almost normal or sometimes 
elevated, but the estradiol to testosterone ratio seems to 
be constantly higher than in normal men [5, 81] (Table 1). 
This may account for the development of gynecomastia, 
the latter being associated with low testosterone even in 
non Klinefelter patients [82]. In adult men with KS, serum 
inhibin B is undetectable due to the tubular damage [83, 
84] and serum anti-mullerian hormone is lower than nor-
mal [76, 85–87]. More recent studies have provided also 
evidence of lower INSL3 levels in comparison with normal 
subjects [88].

Likewise signs and symptoms of hypogonadism (e.g. 
sexual dysfunction), comorbidities associated with KS such 
as diabetes, metabolic syndrome, osteoporosis and car-
diovascular diseases usually appear during adulthood and 
increase with advancing age [16, 22, 89].

When serum testosterone is below normal, obesity and 
gynoid fat distribution are common in men with KS [16], 
in addition reduced muscle strength may develop [5, 7, 10, 
11].

Testosterone replacement therapy is effective in improv-
ing symptoms related to androgen deficiency, but not all 
other features related to the genetic abnormality (Table 1). 
For this reason, it is important to unravel symptoms due to 
testosterone deficiency from the others.

Several other clinical features of KS have been related 
to hypogonadism, but with a variable degree of uncertainty. 
The finding of bone mineral density lower than normal 
is prevalent in patients with KS, but it seems not directly 
related to low serum testosterone [90]. Accordingly, several 
cognitive and psychological aspects are associated with 
KS [5]. Intellectual abilities are not impaired, but deficits 
in specific domains of cognition (e.g. reduction in speech 
and in language abilities, verbal processing speed) may be 
present [19, 20, 91] and the school performance may be 
impaired. Speech disabilities remain confined in the range 
of normal general cognitive abilities [92]. The overall cog-
nitive ability standard score, in fact, on average falls within 
the normal range and not in the intellectual disability range 
[92, 93]. As language and learning disabilities become 
manifest during infancy, their relationship with hypog-
onadism may be ruled out. In addition, this kind of speech 
problems is common also in other sex chromosome trisomy 
not associated with hypogonadism [93], thus suggesting 
that they depend from genetic factors [92]. However, it is 

not possible to exclude that early exposure to low andro-
gens levels during prenatal life might represent a causal 
factor for the development of speech disabilities. Several 
psychiatric disorders (e.g. depression, paraphilia, autis-
tic and obsession-compulsive trait) seem to be more com-
mon in KS, but these data need to be replicated on a large 
scale in order to be confirmed [93, 94], their relationship 
with hypogonadism remaining unknown [92]. Finally, the 
old concept of a strong association among KS and criminal 
behavior, severe psychiatric disorders, and mental retarda-
tion is now considered outdated, since no evidence-based 
data have subsequently confirmed this erroneous long-held 
view [5, 7, 10, 11].

A case of a 51-year-old adult man affected by both 
KS and congenital adrenal hyperplasia (CAH) due to 21 
hydroxylase deficiency, the first causing androgen defi-
ciency, the latter leading to androgen excess was helpful 
in disclosing testosterone-dependent signs and symptoms 
in KS [95]. Under-virilization and abnormalities of sexual 
behavior (in particular of libido, erectile function and sex-
ual intercourses) occurred in this patient soon after starting 
cortisone acetate, due to the reduction in adrenal steroids 
and the impairment of the balance in the androgen status 
previously created by the two syndromes [95]. Thus, the 
normalization of adrenal androgens revealed clinical fea-
tures due to testosterone deficiency and KS [95].

Clinical implications

Patients with a diagnosis of KS needs to be followed 
throughout life and have to be treated with testosterone in 
case of hypogonadism. Particular attention should be paid 
to adequate titration of testosterone dosage in these patients 
since they mostly have a mild testosterone deficiency, 
especially those with mild phenotype. All testosterone 
formulations are effective in patients with KS, the choice 
depending on the pretreatment levels of serum T, patients’ 
preferences and physicians’ attitude and experience with 
the formulations commercially available.

Finally, the management of KS should also include the 
prevention or treatment of comorbidities.

Unresolved issues

The main issue concerns how to improve a precocious 
diagnosis in order to reduce the number of patients who 
remains undiagnosed and to avoid the delay in the diagno-
sis. For these patients who are unaware of suffering of KS, 
it could be assumed that they are somewhat healthy and 
do not require medicalization and/or treatment. However, 
we do not know how many of them do not seek medical 
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consultation for other reasons (lack of compliance, negli-
gence, scarce attitude to consult physician, etc.), but still 
complain of signs and symptoms of the disease. This gap in 
knowledge does not allow unraveling the entire spectrum of 
phenotypes of KS, a prerequisite useful to target and per-
sonalize the management of the disease, according with the 
real patient’s health status.

In addition, some genetic aspects related to the pheno-
type remains undetermined. Despite the insights provided 
by numerous studies concerning the clinical consequences 
of KS performed so far, our knowledge of the molecular 
and cellular mechanism underlying the KS pathogenesis is 
still limited in part due to the lack of in-depth mechanis-
tic studies. A part from the aneuploidy per se and the inter-
individual genetic variation, several genetic mechanisms 
may play as other possible modulators of the variability 
of the phenotype observed in KS patients. It deals with the 
dosage effect and the expression/inactivation status of the X 
chromosome genes, the presence of mosaicism, the number 
and the derivation (maternal or paternal) of supernumerary 
X chromosome/s, the activity of the genes located in the 
pseudoautosomal regions (PAR) of the sex chromosomes.

Furthermore, we do not know, at present, how to manage 
paucisymptomatic KS patients that remains undiagnosed 
since our knowledge on their real health conditions is very 
poor.

Hence, the impact of the disease during fetal life and 
the early period after birth (including the so-called min-
ipuberty) remains an open issue. Furthermore, data on how 
patients with KS aging are scanty as well as information on 
how managing these patients in the elderly.

Conclusions

Clinical and genetic phenotype of KS as well as their rela-
tionship are still not completely understood and need to be 
fully elucidated in order to improve also the clinical man-
agement of this disease.

Accordingly, KS remains largely underdiagnosed (only 
25 % of the expected number of patients are correctly 
diagnosed and only a minority before the puberty onset) 
and the majority of patients are often diagnosed during 
adulthood. Prompt educational and psychological supports 
might prevent any difficulties in their language, scholastic 
and neuropsychological difficulties; the start of the testos-
terone replacement therapy as soon as the patients need it 
allows them to avoid the long-term consequences of the 
hypogonadism; semen or testicular tissue cryopreserva-
tion could also be performed as soon as possible, before 
the testicular damage starts, probably at puberty. Indeed, 
a major effort should be done in order to increase our 

ability to perform early diagnosis of the KS and to provide 
advancement on the knowledge of both pathogenetic and 
clinical issues.
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