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Abstract

The frequent occurrence of congenital heart defects (CHDs) in chromosome abnormality

syndromes is well-known, and among aneuploidy syndromes, distinctive patterns have

been delineated. We update the type and frequency of CHDs in the aneuploidy syn-

dromes involving trisomy 13, 18, 21, and 22, and in several sex chromosome abnormali-

ties (Turner syndrome, trisomy X, Klinefelter syndrome, 47,XYY, and 48,XXYY). We also

discuss the impact of noninvasive prenatal screening (mainly, cell-free DNA analysis),

critical CHD screening, and the growth of parental advocacy on their surgical manage-

ment and natural history. We encourage clinicians to view the cardiac diagnosis as a

“phenotype” which supplements the external dysmorphology examination. When

detected prenatally, severe CHDs may influence decision-making, and postnatally, they

are often the major determinants of survival. This review should be useful to geneticists,

cardiologists, neonatologists, perinatal specialists, other pediatric specialists, and general

pediatricians. As patients survive (and thrive) into adulthood, internists and related adult

specialists will also need to be informed about their natural history and management.
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1 | INTRODUCTION

Most clinicians, from trainees to medical specialists, are impressed by the

common occurrence and often-distinctive pattern of congenital heart

defects (CHDs) in many malformation syndromes, especially those with

aneuploidy. At a personal level, many of us recall these as career-defining

moments, which contributed to our decision to care for people with

these syndromes. A leading pediatric cardiology textbook reported a con-

cise review of the occurrence of CHDs in syndromes (using rounded fig-

ures) as 50–80% in trisomy 13, 95% in trisomy 18, 50% in Down

syndrome and 25% in Turner syndrome (table 3.2 in Goldmuntz & Cren-

shaw, 2016). In contrast, CHDs are considered rare in Klinefelter syn-

drome, 47,XYY, and complete trisomy X. Although only a few years have

elapsed since that review, an update is appropriate because of additional

research and reporting. With tremendous changes in prenatal and

postnatal genetic testing (e.g., prenatal chromosome microarray and

cfDNA testing), critical CHD (CCHD) newborn screening programs, and

the role of parental advocacy, we review these CHD syndrome associa-

tions, noting the impact on prevalence, management, and natural history.

Finally, we explore whether the most robust chromosome associations

can provide insights into the nonsyndromic forms of CHD, and future

directions for research.

2 | METHODS

2.1 | Definitions

Aneuploidy is defined as the absence or presence of an additional

complete chromosome. We include the following autosomal (trisomy
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13, trisomy 18, Down syndrome, and trisomy 22) and sex chromo-

some abnormality syndromes (45,X; 47,XXX; 47,XXY; 47,XYY; and

48,XXYY) (Tables 1 and 2). Mosaic forms will be briefly noted for tri-

somy 22 which is usually lethal, but associated with survival in the

mosaic form, and 47,XXX which is often associated with a slightly

milder form of Turner syndrome.

We define CHDs as structural defects of the intracardiac and

vascular structures. For completeness sake, we briefly mention

other cardiovascular abnormalities including aortic dilation, mitral

valve prolapse, and congenital coronary artery anomalies. Omitted

from discussion are hypertension, lymphedema, dyslipidemia, and

acquired coronary artery disease, although we recognize that these

are common morbidities associated with older individuals in some

of the aneuploidy syndromes.

2.2 | Literature

We present an efficient discussion of this topic, citing major

review articles instead of historical articles if they included an

exhaustive review of major case series and attempted evidence-

based analysis.

2.3 | New patients

Limited unpublished data from the authors' individual specialty clinics

was noted for specific issues.

3 | SYNDROME REVIEW

Table 1 (autosome aneuploidy) and Table 2 (sex chromosome aneu-

ploidy) review the frequency and types of CHDs. Clinical features

for each syndrome can be reviewed in a familiar textbook (Jones,

Jones, & Del Campo, 2013). In general, percentages were rounded

off, and ranges were used on the tables, unless a specific figure was

well-validated.

4 | DISCUSSION

4.1 | Epidemiology of aneuploidy syndromes
and CHDs

The population-based birth prevalence of CHDs in the United

States has been estimated as approximately 68 per 10,000

livebirths (Bjornard et al., 2013). In France, this increases to 90 per

10,000 when termination of pregnancy and stillbirths are included,

decreasing to 78 per 10,000 when chromosome abnormalities are

excluded (Khoshnood et al., 2013). The estimated incidence of

CHDs is ~2.4 million people (1 million children) (Gilboa

et al., 2016).

4.2 | CHD diagnosis and management across the
lifespan

Prenatal ultrasonography and fetal echocardiography have had a tre-

mendous impact on decision- making during pregnancy. The presence

of a serious CHD often influences parental decision-making to con-

tinue pregnancy. Additionally, the success of CHD surgery may be lim-

ited by comorbidities and potentially early mortality with a diagnosis

of aneuploidy.

The first success in diagnosing Down syndrome in a fetus was

reported over 50 years ago (Valenti, Schutta, & Kehaty, 1968). Cur-

rently, amniocentesis, chorionic villus sampling, and rarely percutane-

ous umbilical blood sampling can obtain fetal tissues directly for

chromosome studies, metabolic testing, sequencing analyses, or utilize

microarray for diagnostic testing (Carlson and Voora, 2017). All proce-

dures to obtain samples are associated with increased risk of miscar-

riage (Bianchi, Crombleholme, D'Alton, & Malone, 2010).

In contrast to diagnostic testing, genetic screening tests for aneuploidy

that do not incur additional pregnancy risk and are now routinely offered

to pregnant women. These include early risk assessment (11–14 weeks)

with ultrasound and serum markers, and noninvasive prenatal testing

(NIPT). Routine first trimester prenatal ultrasound may also detect “soft

markers” of aneuploidy such as increased nuchal fold, hypoplastic nasal

bone, and other suspicious findings (Bianchi et al., 2019). The second tri-

mester anatomical survey can detect many birth defects including CHDs,

with further definition provided by fetal echocardiogram or fetalMRI. Char-

acteristic CHDsmay then be followed by diagnostic testing for aneuploidy.

NIPT, especially cell-free DNA (cfDNA) testing, is now rec-

ommended for genetic screening for aneuploidy as it is more accurate

than the first or second trimester screening (Bianchi et al., 2014). This

test screens dosage of cfDNA (fetal placental DNA plus maternal

DNA) in a maternal blood sample, thus avoiding risk to the pregnancy.

cfDNA screening is typically used to detect 13, 18, 21, X and Y, and

usually expanded panels include the 22q11 region which can poten-

tially detect trisomy 22. It should be noted that the positive predictive

value of cfDNA screening for 45,X is low (~26%), and any positive test

should be confirmed with amniocentesis or neonatal karyotype

(Bianchi et al., 2010). The American College of Medical Genetics and

Genomics recommends that cfDNA screening replace serum screen-

ing for aneuploidy for all pregnant women (Gregg, et al., 2016).

There is insufficient data on prenatal testing to specifically address

how many of those affected with aneuploidy come to attention after

prenatal echo and vice versa. Data is sparse regarding the overall ascer-

tainment of fetal echocardiography leading to a diagnosis of aneuploidy,

and there are few or no studies regarding fetuses with aneuploidy

assessed by other means, and their subsequent echocardiographic find-

ings (Pavlicek et al., 2019; Tuuli et al., 2009). In addition to the expanded

prenatal diagnosis of aneuploidy syndromes with frequent CHDs, post-

natal diagnosis of the most severe CHDs in CCHD newborn screening

programs has grown rapidly worldwide (Bakker et al., 2019; Liberman

et al., 2014; Oster et al., 2016). Among the current list of 12 CCHDs are

7 primary screening target defects (hypoplastic left heart syndrome,

tetralogy of Fallot, truncus arteriosus, pulmonary atresia, tricuspid atresia,
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TABLE 1 Congenital heart defects (CHDs) in autosomal aneuploidy syndromes

Syndrome Trisomy 13 Trisomy 18 Trisomy 22 Trisomy 21 (Down syndrome)

References Musewe, Alexander, Techima,

Smallhorn, & Freedom, 1990

Wylie et al., 1994;

Lin et al., 2007

Polli et al., 2014

Kosiv, Gossett, Bai,

& Collins, 2017

Domingo, Carey, Eckhauser,

Wilkes, & Menon, 2019

Van Praagh et al., 1989

Musewe et al., 1990

Balderston, Shaffer,

Washington, &

Sondheimer, 1990

Baty et al., 1994;

Crider, Olney, & Cragan,

2008

Savva, Walker, & Morris,

2010

Kosiv et al., 2017

Abdelgadir,

Nowaczyk, & Li,

2013;

Kehinde et al.,

2014

Bergstrom et al., 2016;

Pfitzer et al., 2018;

Freeman et al., 2008

Lange, Guenther, Busch,

Hess, & Schreiber, 2007; de

Graaf et al., 2015

Prevalence of

syndrome per

10,000 livebirths

1.4 1.2–2.3 NA 12.6

aFrequency at birth of

CHDs in syndrome

b ≥ 80% ≥ 90% 75–100% 50%

Types of CHDs

Laterality defects Rare Rare Not reported Rare

cConotruncal, all 25–50% 25–50% 5–25% Rare

D-TGA Rare

Other Rare Rare Not reported Rare

L-transposed

great arteries

Single ventricle

Single ventricle

physiology

20–30%

Septal defects, all 25–50% 50–75% 5–25%

ASD, secundum 85% 50–75%

VSD, membranous 40–50% ≥ 90%

VSD, muscular

VSD, canal-type

VSD,

malalignment

PDA 50–60% 85%

AVSD 10% 10% Rare 25–50%

AVSD, complete 5–25%

ASD, primum

TAPVC Rare Rare Not reported

Valve defects Polyvalvar dysplasia Polyvalvar dysplasia 5–25% Rare

75% 75–100%

Outcome of surgery Decreased in-hospital mortality Decreased in-hospital

mortality

Unknown Similar age and with similar

outcome compared to those

without down syndrome

Impact of CHD on life

expectancy

Main determinant Main determinant Unknown Main determinant

Other rare cardiac

abnormalities

Cor triatriatum Complex CHDs Aortic arch abnormality

Abbreviations: ASD, atrial septal defect; AVSD, atrioventricular septal defect; CHD, congenital heart defect; LB, livebirth; TAPVC, total anomalous

pulmonary venous connection; VSD, ventricular septal defect.
aFrequency of CHDs are noted as a range, unless a specific frequency has been well-established.
bThe frequency of any birth defects in the newborn period is considered a birth prevalence.
cConotruncal defects include truncus arteriosus, interrupted aortic arch, type B, tetralogy of Fallot, malalignment-type ventricular septal defect and double

outlet right ventricle.
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d-transposition of the great arteries, and total anomalous pulmonary

venous connection), plus an additional five defects (coarctation, Ebstein

anomaly, interrupted aortic arch, single ventricle, double outlet right ven-

tricle). Ongoing research will continue to quantify the impact of CCHD

screening on CHD prevalence estimates, and should note whether aneu-

ploidy syndromes are included.

4.3 | Trisomy 13 and trisomy 18

Although there are substantial differences in the external appearance and

malformations of trisomy 13 and trisomy 18, they are often discussed

together because of similar challenges in prenatal and postnatal decision-

making. Both are associated with multiple birth defects, severe intellectual

TABLE 2 Congenital heart defects in

sex chromosome aneuploidy syndromesaSyndrome
Turner syndrome (45, X and other
karyotypes) 48, XXYY

References Mortensen, 2018; Gutmark-Little,

2013; Silberbach, 2018

Tartaglia, 2008

Prevalence of syndrome

per 10,000 livebirths

4.0 females NA

aFrequency at birth of CHDs in

syndrome

23–50% 18/93 (19.6%)

Types of CHDs

Laterality defects Rare N/A

Conotruncal, all Rare N/A

Other (L-transposed great

arteries, single ventricle)

Rare Rare (1%)

L-transposed great arteries

Single ventricle

Simple shunts: 5–25%

ASD, secundum ASD (unspecified), rare VSD (unspecified)

VSD, membranous VSD (unspecified), rare ASD (unspecified)

VSD, muscular

PDA

AVC,/AVSD Rare N/A

AVC, AVSD, complete

ASD, primum

TAPVC Rare N/A

PAPVC, 5–25%

Valve defects BAV 25% Rare

Aortic stenosis Mitral valve

prolapse

MV stenosis Pulmonic stenosis

HLHS

Outcome of surgery Similar risk as non-TS outcomes with

exception of PAPVR and HLHS

(increased mortality)

N/A

Impact of CHD on life expectancy Accounts for 50% of threefold

increase in early death; life

expectancy reduced by 13 years

N/A

Other cardiac abnormalities ETA, 25–50%
Aortic dilation, 25–40%
Coarctation, 5–25%
Congenital coronary artery anomalies,

5–25%
PLSVC, 5–25%

Abbreviations: AVSD, atrioventricular septal defect; BAV, bicuspid aortic valve; CHD, congenital heart

defect; ETA, elongation of the transverse aorta; HLHS, hypoplastic left heart syndrome; LB, livebirth;

PLSVC, persistent left superior vena cava; TAPVC, total anomalous pulmonary venous connection.
aKlinefelter syndrome and 47,XYY were omitted because of the rarity of CHDs.
bFrequency of CHDs are noted as a range, unless a specific frequency has been well-established.
cConotruncal defects include truncus arteriosus, interrupted aortic arch, type B, tetralogy of Fallot,

malalignment-type ventricular septal defect and double outlet right ventricle.
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disability, and high mortality. The leading parent support group welcomes

families with both trisomy syndromes (and a few related disorders)

(Support of Families of Trisomy, S.O.F.T.). The type and frequency of

CHDs in these aneuploidy syndromes has been well described over many

decades (Lin et al., 2007; Musewe et al., 1990; Polli et al., 2014), with

superior delineation of morphologic types in autopsy studies (Van Praagh

et al., 1989). As noted in Table 1, simple shunts are common in both disor-

ders. However, conotruncal CHDs, atrioventricular septal defect (AVSD),

and polyvalvar dysplasia create a cardiac phenotype that can lead to clini-

cal diagnosis when associated with various noncardiac defects, especially

for trisomy 18 (Van Praagh et al., 1986). Similar to what is observed in

Down syndrome, pulmonary vascular changes increase mortality (Tahara,

Shimozono, Nitta, & Yamaki, 2014). The prenatal ultrasonographic detec-

tion of a complete AVSD tends to prompt reflex consideration of Down

syndrome, but these trisomies must also be included. The presence of a

serious CHD may contribute to the decision to terminate pregnancy;

some parents who continued their pregnancies reported feeling pressure

(Guon, Wilfond, Farlow, Brazg, & Janvier, 2013).

Although a conservative approach (palliative measures) has been the

traditional guideline for infants with trisomy 18, more clinicians (48%)

were willing to discuss surgery in one study (Kaulfus et al., 2019). There

is a growing body of literature analyzing outcome, the impact of natural

history, CHDs, surgery, and attitudes of parents and providers (Baty

et al., 1994; Domingo et al., 2019; Kaneko et al., 2008; Kosiv et al., 2017;

Lakovschek, Streubel, & Ulm, 2011; Meyer et al., 2016; Weaver, Starr,

Austin, Stevenson, & Hammel, 2018). Recent outcome studies provide

strong support for consideration of CHD surgery (Kosiv et al., 2017), but

the impact on survival after 1 year is debated. Follow-up after cardiac

surgery for trisomy 13 and 18 has focused on in-hospital mortality and

survival up to two years; longer term studies are not available because of

rarity of survivors. Parents responded with often emotional insights in a

survey about their decision to continue pregnancy after prenatal diagno-

sis, and the power of a supportive social network (Guon et al., 2013;

Janvier, Farlow, & Wilfond, 2012). Rather than advising a single guideline

for all patients, decision-making about surgery for CHDs in trisomy

13 and trisomy 18 should take in to account numerous factors for each

family (Domingo et al., 2019; Jenkins & Roberts, 2017).

Mosaicism for trisomy 13 was generally associated with a less

severe outcome among almost 50 reported patients (Chen et al., 2017;

Griffith et al., 2009; Hsu & Hou, 2007; Wieser, Wohlmuth, Rittinger,

Fischer, & Wertaschnigg, 2015). Although some patients have a milder

phenotype and favorable outcome, there is no consistent correlation

between the percentage of trisomy 13 cells and the severity of defects

and intellect. Long-term outcome studies with neuropsychologic evalua-

tions have not been reported. In the most detailed review, CHDs were

noted in 74%, involving mostly atrial septal defects and ventricular septal

defects, and a single case with tetralogy of Fallot (Griffith et al., 2009).

4.4 | Down syndrome

There is abundant literature and ongoing research about the type and

frequency of CHDs in Down syndrome (Versacci, DiCarlo, Digilio, &

Marino, 2018). The American Academy of Pediatrics recommends that

all patients with Down syndrome have a postnatal echocardiogram, to

be read by a pediatric cardiologist regardless of whether a fetal echo-

cardiogram was performed. Referral to a pediatric cardiologist is rec-

ommended for any infant whose results are abnormal (Bull et al., 2011).

In the future this may change, as recent evidence shows that complex

CHDs were not missed on fetal echocardiography performed on

patients with Down syndrome, that is, postnatal echocardiography did

not detect additional CHDs (Cooper et al., 2019). In adolescence and

into adulthood, there is a risk for valvular disease, and echocardiogra-

phy with Doppler should be considered in any patients with symptoms

(such as increasing fatigue, shortness of breath, exertional dyspnea, or

a new murmur or gallop) (Bull et al., 2011). Valve disease was among

the mostly mild abnormalities detected on a cross-sectional study of

149 subjects ages 10–20. Nine (6%) had new echocardiographic find-

ings, including transitional AVSD in one subject (Clauss et al., 2019).

Studies of CHDs in Down syndrome have not consistently shown dis-

parity by sex (Morales-Demori, 2017; Santoro, Coi, Spadoni, Bianchi, &

Pierini, 2018), but have been shown to differ by race with higher rates

of AVSD in black patients with Down syndrome (Freeman et al., 2008).

The natural history and outcome of intervention for CHDs in

patients with Down syndrome varies. The presence of a CHD in Down

syndrome increases the chance of pulmonary hypertension (Bush et al.,

2018) and increases neonatal mortality (Cua, Haque, Santoro, Nichol-

son, & Backes, 2017). Patients with Down syndrome and single ventricle

palliation are at high risk for procedural and long-term mortality (Peterson

et al., 2019). However, many neonates with Down syndrome and CHD

have surgical repair at similar age and with similar outcomes compared to

those without Down syndrome (Lange et al., 2007). The median age at

surgery was 3.3 months for primary AVSD repair and did not differ in

patients with Down syndrome (Burstein et al., 2019). Long-term develop-

mental outcomes at school age do not differ between those with Down

syndrome and CHD and those without CHD (Morales-Demori, 2017).

4.5 | Trisomy 22

Complete, nonmosaic trisomy 22 is frequent (11–15%) among of

spontaneous miscarriages with aneuploidy, and ~5% of all spontane-

ous miscarriage (Ford, Wilkin, Thomas, & McCarthy, 1996; Menasha,

Levy, Hirschhorn, & Kardon, 2005). Live-born children with this condi-

tion are rare, primarily published as case reports. Complete trisomy

22 typically leads to neonatal death (mean survival 4 days of life), with

the maximum reported age of 3 years (Heinrich et al., 2012). A review

of live-born patients with complete trisomy 22 noted that 92%

(24/26) had CHDs (Kehinde et al., 2014). A review of the literature

identified septal defects (Kontomanolis, Pandya, & Limperis, 2010;

Ma, Ouyang, Hao, Zhao, et al., 2018; McPherson & Stetka, 1990;

Naicker & Aldous, 2014), conotruncal anomalies (Stratton et al., 1993;

Tinkle, Walker, Blough-Pfau, Saal, & Hopkin, 2003; Xu et al., 2019),

aortic arch anomalies (Bacino et al., 1995), hypoplastic right heart

(Bacino et al., 1995), and complex CHDs (Bacino et al., 1995; Tonni,

Ventura, Pattacini, Bonasoni, & Ferrari, 2012). This is similar to a
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prenatal series of 5 patients combined with 10 from the literature

(Stressig, Körtge-Jung, Hickmann, & Kozlowski, 2005).

Mosaic trisomy 22 is rare, with at least 22 cases reported. Various

types of CHDs were noted in 76% of a series of 21 patients

(Abdelgadir et al., 2013; Kalyina et al., 2019). It is difficult to discern the

cause of early mortality in patients with complete or mosaic trisomy

22, whether it is cardiac in nature, or some other etiology. The number

of published cases is small, and long term follow-up is not available.

4.6 | Turner syndrome

Turner syndrome has a major impact on a multitude of systems, and

appropriate diagnosis and management of congenital and acquired car-

diovascular disease is crucial. As noted on Table 1, CHDs of the left

side of heart predominate, ranging from bicuspid aortic valve (BAV) and

coarctation of the aorta, to hypoplastic left heart syndrome. An echo-

cardiogram is recommended for all patients at diagnosis, even if prena-

tal testing (fetal echocardiography) did not detect a CHD. Thereafter,

imaging should be obtained at regular intervals following evidence-

based guidelines (Silberbach et al., 2018). In addition to echocardiogra-

phy with Doppler, cardiac magnetic resonance imaging is necessary to

image the entire arch, preferably, at an age when sedation is not

needed (Guttmark-Little and Backeljauw, 2013; Silberbach et al., 2018).

Aortic dilatation is common in individuals with BAV, whether they have

Turner syndrome. In women with Turner syndrome, the reported range

of prevalence of dilatation is wide (11–48%). This is attributable to dif-

ferences in imaging (echocardiography, MRA, CTA) and attempts to

adjust this measurement in light of short stature. Aortic dissection is a

rare but feared complication in this patient population, occurring at

greater frequency and significantly younger age than the general popu-

lation, particularly during pregnancy. Those women attempting preg-

nancy, typically via assisted reproductive technologies, should be

closely monitored with cardiac imaging, before, during, and after preg-

nancy (Donadille, Bernard, & Christin-Maitre, 2019). Congenital coro-

nary artery anomalies are common in Turner syndrome women (20%),

and their anatomy should be delineated in the planning of aortic sur-

gery (Viuff et al., 2016). In all Turner syndrome patients, blood pressure

screening and intervention is mandatory as hypertension prevalence

increases with age and is thought to be a risk factor for aortic dilatation

and dissection. Electrocardiography is necessary given that conduction

defects affect 50%, including QT prolongation.

Of 226 individuals evaluated in the MGH Turner syndrome clinic,

76 (34%) had a CHD (aortic dilatation excluded), with a similar frequency

in patients less than or equal to 18 years (36/96, 38%) and those older

than 18 years (40/130, 31%). Among this group, 50 of 226 (22%) indi-

viduals had a BAV, with equal occurrence regardless of age.

4.7 | Trisomy X (47,XXX)

Congenital heart defects are not a typical feature of 47,XXX syn-

drome, and have been omitted from Table 2. In a clinical series of

16 patients with malformations (Haverty, Lin, Simpson, Spence, &

Martin, 2004), and a population-based prevalence study from Europe,

no CHDs were noted (Boyd et al., 2011).

However, CHDs may occur in individuals with a form of Turner

syndrome mosaicism involving 47,XXX and 45,X. The phenotype var-

ies greatly, and case series have reported hypoplastic left heart syn-

drome (Sybert, 2002), and regurgitant mitral and tricuspid valves

(Tang, Lin, Guo, & Yu, 2019).

4.8 | Klinefelter syndrome (47,XXY and variants)

Klinefelter syndrome (47,XXY) is the most common aneuploidy syn-

drome, affecting ~1 in 600 males. Individuals with Klinefelter syn-

drome are generally not considered to be at increased risk for major

structural malformations, including CHDs. Some historical studies

showed a small increase in morbidity or mortality associated with

CHD and other congenital anomalies (Gravholt et al., 2018). A con-

cern about ascertainment bias is often noted, as it is estimated that up

to 75% of cases of Klinefelter syndrome are undiagnosed, while those

with malformations are more likely to undergo genetic diagnostic test-

ing. In the MGH Klinefelter Syndrome Clinic, we have seen individuals

with assorted CHDs in whom Klinefelter syndrome was detected

because chromosomal testing was performed as part of the diagnostic

evaluation. Given the fact that Klinefelter syndrome is the most com-

mon aneuploidy and that CHDs are relatively common in the general

population, we hypothesize that these may be unrelated incidental

findings.

Small studies have suggested a possible association between

Klinefelter syndrome and a shortened QTc interval (Jørgensen et al.,

2015), though the clinical relevance of this remains unclear. Overall,

most clinicians do not routinely recommend screening for CHD or

arrythmias in all individuals with a diagnosis of typical Klinefelter

syndrome.

4.9 | 47,XYY

Similar to Klinefelter syndrome, the diagnosis of 47,XYY is not consid-

ered a risk factor for CHDs. In a population-based study in Denmark,

an increased risk of “cardiovascular disease” was reported, but CHDs

were not specified (Stochholm, Juul, & Gravholt, 2010). This may

reflect an increased incidence of general adult-onset cardiovascular

disease in this population, which is likely to be multifactorial in its

etiology.

4.10 | Higher order male sex chromosome
aneuploidies

The rate of CHDs and other malformations appears increased in indi-

viduals with 48,XXYY, 48,XXXY, 49,XXXXY, and other higher order

male sex chromosome aneuploidies (Peet, Weaver, & Vance, 1998;
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Tartaglia et al., 2008). However, given the rarity of these syndromes,

large studies have not been performed. The best estimates come from

studies of patients with 48,XXYY, where the incidence of CHDs has

been estimated at 19%, with ventricular septal defects being the most

common type (Tartaglia et al., 2008).

4.11 | Genetic basis and developmental insights

The development of the human heart is a complex process that

takes place between 3 and 8 weeks of embryonic development.

The different regions of the heart (atria, ventricles, atrioventricular

canal, outflow tract, aortic arch) have distinct embryonic origins,

and their differentiation and morphogenesis is orchestrated by a

multitude of developmental signaling pathways (Epstein, 2010;

Zaidi and Brueckner, 2019). Errors in these mechanisms are

believed to underlie CHDs. The high incidence of CHDs in many

genetic syndromes, including aneuploidies, is therefore not

surprising.

The occurrence of a rare defect in a common syndrome can

appear as a tantalizing signal about the chromosome location of caus-

ative genes. The association of specific subtypes of CHDs with a given

genetic syndrome may reflect the relative importance of the

perturbed gene(s) for that syndrome in the development of that

region of the heart. Understanding such associations has the potential

to provide significant insights into the mechanisms of nonsyndromic

causes of CHDs. Classic examples include the interplay between the

pharyngeal endoderm, the cardiac neural crest, and the secondary

heart field, which is thought to underlie the cardiac outflow and aortic

arch defects in 22q11 deletion syndrome, and the role of the Ras-

MAPK signaling cascade in the endocardial cushions, which has been

hypothesized to explain the valvular defects seen in Noonan syn-

drome (Calcagni et al., 2017). In the case of aneuploidy syndromes,

however, making a case for such a mechanism is far more complex

given the fact that so many genes have the potential to be perturbed.

As discussed below, this hypothesis has been explored for Down syn-

drome and Turner syndrome.

Analysis of patients with partial trisomy 21 identified a candidate

region for CHDs (Pelleri et al., 2017). Next-generation sequencing

implicated candidate genes for CHD in patients with Down syndrome

(Alharbi et al., 2018). These and other studies suggest that the preva-

lence of CHDs, and AVSD, in particular, in Down syndrome is likely

multifactorial and related to a complex interplay between genes on

chromosome 21 with variants elsewhere in the genome. Initial

genome-wide association study of patients with Down syndrome and

AVSD identified regions of interest, and a few common genetic vari-

ants of large effect size, but which did not account for risk for AVSD

in Down syndrome (Ramachandran et al., 2015). Study of copy num-

ber variants in patients with Down syndrome and AVSD or CHD,

demonstrated the complex, multifactorial nature of AVSD in Down

syndrome and supported that Down syndrome-associated AVSD is

likely heterogenous (Ramachandran et al., 2015; Rambo-Martin

et al., 2018).

With an X aneuploidy syndrome, the hypothesis of a dosage

effect can be evaluated to some degree. Women with 45,X Turner

syndrome have more CHDs compared to women with Trisomy X and

males with 47,XXY. Women with the lowest level of 45,X mosaicism

(<20%) are generally thought to have fewer CHDs than those with

complete 45,X. Whereas 70% of all patients with BAV are male, the

association (~30%) with Turner syndrome is striking. These observa-

tions suggest that more than one X chromosome is protective. How-

ever, half of women with Turner do not have a CHD, which may be

due to an interaction of the X chromosome with autosomal variants

(Prakash et al., 2016). To this point, very recent exome sequencing

studies suggest an association of aortopathy and BAV with

hemizygosity of TIMP1 (Xp11.3) and variants of its autosomal para-

logue TIMP3 (22q12.3). The products of these genes are members of

the tissue inhibitor of matrix metalloproteinase family, known inhibi-

tors of matrix metalloproteinases which themselves degrade the

extracellular matrix. Their findings show a 20-fold risk of having a

BAV in the setting of only having one copy of TIMP1 (i.e., Turner syn-

drome) and a specific variant of TIMP3 (Corbitt et al., 2018; Corbitt,

Gutierrez, Silberbach, & Maslen, 2019).

Despite these advances, the molecular mechanisms for most

CHDs in both Down syndrome and Turner syndrome, as well as other

aneuploidies, remain largely unclear. More evidence is necessary to

establish the contribution of autosomal genetic variants. For Turner

syndrome, these exciting studies redirect prior efforts to interrogate

Xp for causative genes (Bondy et al., 2013).

In conclusion, CHDs in aneuploidy syndrome are never pathogno-

monic as individual defects, but in the presence of noncardiac features,

distinctive patterns of CHDs can assist in diagnosis, even in fetal life.

Timely diagnosis of CHDs and appropriate follow up into adulthood in

aneuploidy syndromes is crucial to improve outcomes in these often

complex and multi-system conditions. Multidisciplinary care in both the

prenatal and postnatal setting is an essential part of maternal-fetal medi-

cine, prenatal and cardiogenetics clinics, as well as the specialty clinics

dedicated to the specific aneuploidies such as Down syndrome and

Turner syndrome (Lin et al., 2019). Early observations about dosage

effect and chromosome locus have not yet yielded pathogenic genes,

though further research will hopefully provide clues to the genetic

underpinnings of both syndromic and nonsyndromic CHDs.
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